Analysis of dental caries detection with quantitative light-induced fluorescence compared to totally different subject of view units

Analysis of dental caries detection with quantitative light-induced fluorescence compared to totally different subject of view units

Takahashi, N. & Nyvad, B. The function of micro organism within the caries course of:

  • Takahashi, N. & Nyvad, B. The function of micro organism within the caries course of: Ecological views. J. Dent. Res. 90, 294–303. https://doi.org/10.1177/0022034510379602 (2011).

    CAS
    Article
    PubMed

    Google Scholar

  • Pitts, N. B. & Stamm, J. W. Worldwide consensus workshop on caries medical trials (ICW-CCT)—closing consensus statements: Agreeing the place the proof leads. J. Dent. Res. 83, 125–128. https://doi.org/10.1177/154405910408301s27 (2004).

    Article

    Google Scholar

  • Classifications, C. & Methods, P. American academy on pediatric dentistry, American academy of pediatrics. Coverage on early childhood caries (ECC). Pediatr Dent. 38, 52–54 (2016).

    Google Scholar

  • Pitts, N. B. Are we prepared to maneuver from operative to non-operative/preventive therapy of dental caries in medical follow?. Caries Res. 38, 294–304. https://doi.org/10.1159/000077769 (2004).

    CAS
    Article
    PubMed

    Google Scholar

  • Frencken, J. E. et al. Minimal intervention dentistry for managing dental caries–a assessment: Report of a FDI job group. Int. Dent. J. 62, 223–243. https://doi.org/10.1111/idj.12007 (2012).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Schwendicke, F., Tzschoppe, M. & Paris, S. Radiographic caries detection: A scientific assessment and meta-analysis. J. Dent. 43, 924–933. https://doi.org/10.1016/j.jdent.2015.02.009 (2015).

    Article
    PubMed

    Google Scholar

  • Dove, S. B. Radiographic prognosis of dental caries. J. Dent. Educ. 65, 985–990 (2001).

    CAS
    Article

    Google Scholar

  • Madiraju, G. Extra diagnostic worth of digital bitewing radiographs in detecting proximal caries in main molars. Compend. Contin. Educ. Dent. 32, E115-119 (2011).

    PubMed

    Google Scholar

  • Gomez, J., Tellez, M., Fairly, I. A., Ellwood, R. P. & Ismail, A. I. Non-cavitated carious lesions detection strategies: A scientific assessment. Commun. Dent. Oral Epidemiol. 41, 54–66. https://doi.org/10.1111/cdoe.12021 (2013).

    Article

    Google Scholar

  • Fairly, I. A. Caries detection and prognosis: Novel applied sciences. J. Dent. 34, 727–739. https://doi.org/10.1016/j.jdent.2006.06.001 (2006).

    Article
    PubMed

    Google Scholar

  • American Dental Affiliation Council on Scientific Affairs. Using dental radiographs: Replace and suggestions. J. Am. Dent. Assoc. 137, 1304–1312, https://doi.org/10.14219/jada.archive.2006.0393 (2006).

  • Fairly, I. A. & Ekstrand, Okay. R. Detection and monitoring of early caries lesions: A assessment. Eur. Arch. Paediatr. Dent. 17, 13–25. https://doi.org/10.1007/s40368-015-0208-6 (2016).

    CAS
    Article
    PubMed

    Google Scholar

  • Hope, C. Okay., de Josselin, J. E., Area, M. R., Valappil, S. P. & Higham, S. M. Photobleaching of purple fluorescence in oral biofilms. J. Periodontal Res. 46, 228–234. https://doi.org/10.1111/j.1600-0765.2010.01334.x (2011).

    CAS
    Article
    PubMed

    Google Scholar

  • Amaechi, B. T. & Higham, S. M. Quantitative light-induced fluorescence: A possible instrument for common dental evaluation. J. Biomed. Choose. 7, 7–13. https://doi.org/10.1117/1.1427044 (2002).

    ADS
    Article
    PubMed

    Google Scholar

  • van der Veen, M. H. & de Josselin, J. E. Utility of quantitative light-induced fluorescence for assessing early caries lesions. Monogr. Oral Sci. 17, 144–162. https://doi.org/10.1159/000061639 (2000).

    Article
    PubMed

    Google Scholar

  • Kim, H. E., Kwon, H. Okay. & Kim, B. I. Restoration proportion of remineralization in keeping with severity of early caries. Am. J. Dent. 26, 132–136 (2013).

    PubMed

    Google Scholar

  • Kim, Y. S., Lee, E. S., Kwon, H. Okay. & Kim, B. I. Monitoring the maturation technique of a dental microcosm biofilm utilizing the quantitative light-induced fluorescence-digital (QLF-D). J. Dent. 42, 691–696. https://doi.org/10.1016/j.jdent.2014.03.006 (2014).

    Article
    PubMed

    Google Scholar

  • Han, S. Y., Kim, B. R., Ko, H. Y., Kwon, H. Okay. & Kim, B. I. Assessing using quantitative light-induced fluorescence-digital as a medical plaque evaluation. Photodiagnosis Photodyn. Ther. 13, 34–39. https://doi.org/10.1016/j.pdpdt.2015.12.002 (2016).

    Article
    PubMed

    Google Scholar

  • Gmür, R. et al. In vitro quantitative light-induced fluorescence to measure adjustments in enamel mineralization. Clin. Oral Investig. 10, 187–195. https://doi.org/10.1007/s00784-006-0058-z (2006).

    Article
    PubMed

    Google Scholar

  • Zantne, C., Martus, P. & Kielbassa, A. M. Scientific monitoring of the impact of fluorides on long-existing white spot lesions. Acta Odontol. Scand. 64, 115–122. https://doi.org/10.1080/00016350500443297 (2006).

    CAS
    Article

    Google Scholar

  • Kim, Y. S., Lee, E. S., Kwon, H. Okay. & Kim, B. I. Monitoring the maturation technique of a dental microcosm biofilm utilizing the Quantitative Mild-induced Fluorescence- Digital (QLF-D). J. Dent. 42, 691–696. https://doi.org/10.1016/j.jdent.2014.03.006 (2014).

    Article
    PubMed

    Google Scholar

  • Lee, E. S., de Josselin, J. E., Jung, H. I. & Kim, B. I. Crimson fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials. J. Biomed. Choose. 23, 1–6. https://doi.org/10.1117/1.JBO.23.1.015003 (2018).

    Article
    PubMed

    Google Scholar

  • Lee, H. S. et al. Caries detection and quantification round stained pits and fissures in occlusal tooth surfaces with fluorescence. J. Biomed. Choose. 23, 1–7. https://doi.org/10.1117/1.JBO.23.9.091402 (2018).

    Article
    PubMed

    Google Scholar

  • de Barbosa, S. F., Dias, S. J. & Sampaio, V. S. Pure enamel caries: A comparative histological examine on biochemical volumes. Caries Res. 47, 183–192. https://doi.org/10.1159/000345378 (2013).

    Article

    Google Scholar

  • van der Veen, M. H., Thomas, R. Z., Huysmans, M. C. & de Soet, J. J. Crimson autofluorescence of dental plaque Micro organism. Caries Res. 40, 542–545. https://doi.org/10.1159/000095655 (2006).

    Article
    PubMed

    Google Scholar

  • de Oliveira, Okay. M. H. et al. Dental flossing and proximal caries within the main dentition: A scientific assessment. Oral Well being Prev. Dent. 15, 427–434. https://doi.org/10.3290/j.ohpd.a38780 (2017).

    Article
    PubMed

    Google Scholar

  • Geibel, M. A. et al. Radiographic prognosis of proximal caries-influence of expertise and gender of the dental employees. Clin. Oral Investig. 21, 2761–2770. https://doi.org/10.1007/s00784-017-2078-2 (2017).

    Article
    PubMed

    Google Scholar

  • Kim, E. S. et al. A brand new screening technique to detect proximal dental caries utilizing fluorescence imaging. Photodiagnosis Photodyn. Ther. 20, 257–262. https://doi.org/10.1016/j.pdpdt.2017.10.009 (2007).

    Article

    Google Scholar

  • Oh, S. H. et al. Detection of dental caries and cracks with quantitative light-induced fluorescence compared to radiographic and visible examination: A retrospective case examine. Sensors (Basel). 21, 1741. https://doi.org/10.3390/s21051741 (2021).

    ADS
    Article
    PubMed
    PubMed Central

    Google Scholar

  • Verdonschot, E. H. & Angmar-Mansson, B. Superior strategies of caries prognosis and quantification. In Dental caries 1st edn (eds Fejerskov, O. & Kidd, E.) 134 (Blackwell, 2003).

    Google Scholar

  • Jung, E. H. et al. Improvement of a fluorescence-image scoring system for assessing noncavitated occlusal caries. Photodiagnosis Photodyn. Ther. 21, 36–42. https://doi.org/10.1016/j.pdpdt.2017.10.027 (2018).

    Article
    PubMed

    Google Scholar

  • Park, S. W. et al. Comparability of fluorescence parameters between three generations of QLF units for detecting enamel caries in vitro and on easy surfaces. Photodiagnosis Photodyn. Ther. 25, 142–147. https://doi.org/10.1016/j.pdpdt.2018.11.019 (2019).

    Article
    PubMed

    Google Scholar

  • Ko, H. Y., Kang, S. M., Kim, H. E., Kwon, H. Okay. & Kim, B. I. Validation of quantitative light-induced fluorescence-digital (QLF-D) for the detection of approximal caries in vitro. J. Dent. 43, 568–575. https://doi.org/10.1016/j.jdent.2015.02.010 (2015).

    Article
    PubMed

    Google Scholar

  • Campos, S. A. G., Vieira, M. L. O. & de Sousa, F. B. Correlation between ICDAS and histology: Variations between stereomicroscopy and microradiography with distinction resolution as histological strategies. PLoS ONE 25, 1–12. https://doi.org/10.1371/journal.pone.0183432 (2017).

    CAS
    Article

    Google Scholar

  • Gugnani, N., Pandit, I. Okay., Srivastava, N., Gupta, M. & Sharma, M. Worldwide caries detection and evaluation system (ICDAS): A brand new idea. Int. J. Clin. Pediatr. Dent. 4, 93–100. https://doi.org/10.5005/jp-journals-10005-1089 (2011).

    Article
    PubMed

    Google Scholar

  • Ekstrand, Okay. R., Ricketts, D. N. & Kidd, E. A. Reproducibility and accuracy of three strategies for evaluation of demineralization depth of the occlusal floor: An in vitro examination. Caries Res. 31, 224–231. https://doi.org/10.1159/000262404 (1997).

    CAS
    Article
    PubMed

    Google Scholar